联系电话
蚌埠工厂:0552-7111991
南京办公室:4006355553
应聘联络:19105520550
韩国大河脉冲阀:13961856652
联络邮箱
国内业务:info@eetc.cn
International Business:intl.biz@eetc.cn
简历投递:recruiting@eetc.cn
工作时间
周一至周五: 8AM -5PM
联系电话
蚌埠工厂:0552-7111991
南京办公室:4006355553
应聘联络:19105520550
韩国大河脉冲阀:13961856652
联络邮箱
国内业务:info@eetc.cn
International Business:intl.biz@eetc.cn
简历投递:recruiting@eetc.cn
工作时间
周一至周五: 8AM -5PM
扫码关注艾尼科微信公众号
波兰科学院流体机械研究所等基于PIV的实验研究:揭示线电极偏心对电流分布与颗粒流场的关键影响
关键词
窄径静电除尘器, ESP, EHD流, PIV, 流场测量, 除尘效率, 排放达标
随着排放法规日益严格与微型化装置在柴油机、船舶及室内空气净化领域的兴起,窄径静电除尘器(narrow electrostatic precipitator, ESP)的研究受到广泛关注[1-9]。基于电晕放电形成的电场与空间电荷,ESP中常伴随电流-流场耦合产生电流体力学(EHD流)效应,显著影响颗粒迁移与收集效率。本文改写并整合了A. Niewulis、J. Podliński、A. Berendt、J. Mizeraczyk等人在波兰科学院Szewalski流体机械研究所开展的实验性研究成果,重点讨论电极几何偏心(eccentricity)对圆形窄径ESP电流分布与颗粒流场结构的影响,并结合中国工业应用与企业(如艾尼科Enelco)的技术积累提出工程启示。
实验在直径29 mm、长300 mm的玻璃圆筒ESP中进行,采用0.23 mm直径、100 mm长不锈钢放电线,线可沿轴心(concentric)或平行偏移(eccentric,ε从4%到47%)布置;圆柱收集电极分为两半以测量电流分配;对放电线施加正极高压≤10 kV(经10 MΩ限流电阻),气流有无两种工况(0 或轴向0.9 m/s),以香烟烟雾作示踪粒子并采用二维粒子图像测速法(PIV)记录横截面流场[23]。该实验可同时获得总放电电流、左右半筒电流分配及时间分辨的粒子运动场,直接反映EHD流对颗粒输运的影响。
主要结论显示:当放电线偏心ε≤8%时,在恒定电压下总放电电流几乎不变;但ε>8%时,总电流随偏心增大而上升,且流向距线更近的收集电极半筒的分流电流明显更高(个别工况下总电流可较同电压下提升约27%)。PIV结果表明,径向对称的同心布置时,颗粒沿径向由线向筒壁迁移,输运过程较规则;而偏心布置会在筒内形成强烈的螺旋涡旋(三维化的旋涡结构),导致颗粒在壁面绕行、再回流并延长停留时间,涡旋速度随偏心增大而升高(ε=47%时局部速度可达约2.5 m/s),这一流动畸变可能降低实际收集效率并增加再悬浮风险。此外,在有轴向气流时总电流较无轴流工况下降约10%,且粒浓度变化会影响放电电流强度[24]。
对中国工业的意义在于:浆纸、钢铁、水泥与化工行业常面对高颗粒负荷与紧凑空间布置的除尘需求,研究表明电极对准精度与几何优化对窄径ESP的稳定运行与排放达标至关重要。合理设计电极间距、线-筒对中精度以及场强分布,可以减少涡流诱发的再悬浮、提高单机除尘效率并降低能耗与运维成本。艾尼科(Enelco)在极板/极线结构优化、电场建模与多场耦合仿真方面的技术积累,可用于为窄径ESP提供场强均衡、减少局部高电流密度并抑制涡流形成的工程化改良方案;结合在线监测与定期振打、表面涂层与结构化集尘室设计,可显著提高长期运行的收尘率并降低检修频次。
展望未来,窄径ESP和EHD自泵送装置将在柴油尾气处理、船舶、清洁室及分布式空气处理系统中获得更多应用。研发方向包括更精细的电极定位公差控制、三维PIV与数值仿真联合研究、低能耗高效电极表面处理以及基于AI的运行参数优化。对于在中国市场寻求排放达标与成本优化的企业,优先关注电极几何与EHD流场耦合的工程实现,将直接带来节能降耗与运维成本下降的可量化效益。如需定制窄径ESP或电极优化方案,Enelco可基于现场参数提供成套技术咨询与改造实施。
参考文献
[1] D.P. Thimsen, K.J. Baumgard, T.J. Kotz, The Performance of an Electrostatic Agglomerator as a Diesel Soot Emission Control Device, SAE Paper 900330, 1990.
[2] D.B. Kittelson, J. Reinersen, J. Michalski, Further Studies of Electrostatic Collection and Agglomeration of Diesel Particles, SAE Paper 910329, 1991.
[3] M. Farzaneh, A.K. Marceu, P. Lachance, Electrostatic Capture and Agglomeration of Particles Emitted by Diesel Engines, IEEE, 1994.
[4] C. Wadenpohl, F. Loeffler, Electrostatic agglomeration and centrifugal separation of diesel soot particles, Chem. Eng. Proc., 33(5), 1994.
[5] T. Ciach, T.R. Sosnowski, Removal of soot particles from diesel exhaust, J. Aerosol Sci., 1996.
[6] A. Zukeran et al., Two-Stage-Type Electrostatic Precipitator Re-Entrainment Phenomena Under Diesel Flue Gases, IEEE Trans. Ind. Appl., 1999.
[7] Ph. Saiyasitpanich et al., Removal of diesel particulate matter (DPM) in a tubular wet electrostatic precipitator, J. Electrostatics, 2007.
[8] R. Boichot et al., Agglomeration of diesel particles by an electrostatic agglomerator under positive DC voltage: Experimental study, J. Electrostatics, 2008.
[9] T. Yamamoto et al., Diesel PM Collection for Marine and Automobile Emissions Using EHD Electrostatic Precipitators, IEEE Trans. Ind. Appl., 2010.
[10] L. Leger et al., Influence of a DC corona discharge on the airflow along an inclined flat plate, J. Electrostatics, 2001.
[11] H. Yanada et al., An investigation of an ion drag pump using a needle–mesh electrode configuration, Proc. Instn. Mech. Engrs., 2002.
[12] L. Zhao, K. Adamiak, EHD flow in air produced by electric corona discharge in pin–plate configuration, J. Electrostatics, 2005.
[13] H. Tsubone et al., Flow Characteristics of DC Wire-non-parallel Plate EHD Gas Pump, J. Electrostatics, 2008.
[14] A. Katatani, A. Mizuno, Generation of Ionic Wind by Using Parallel Located Flat Plates, J. Inst. Electrostat. Jpn., 2010.
[15] J.S. Chang et al., Corona discharge processes, IEEE Trans. Plasma Sci., 1991.
[16] R.J. Peterson, J.H. Davidson, Modification of Gas Flow by Charged Particles, Proc. IEEE Ind. App. Soc. Ann. Meeting, 1994.
[17] J. Mizeraczyk et al., Experimental Results on Electrohydrodynamic Flow in Electrostatic Precipitators, Asia-Pacific Symposium, 2005.
[18] J. Podliński et al., Electrohydrodynamic Gas Flow in a Positive Polarity Wire-Plate Electrostatic Precipitator and the Related Dust Particle Collection Efficiency, J. Electrostatics, 2006.
[19] J.S. Chang et al., Electrohydrodynamically induced flow direction in a wire-non-parallel plate type electrode corona discharge, J. Phys. D; Appl. Phys., 2007.
[20] J. Podliński et al., 3D PIV Measurements of the EHD Flow Patterns in a Narrow Electrostatic Precipitator, Czechoslovak Journal of Physics, 2006.
[21] J. Podliński, A. Niewulis, J. Mizeraczyk, Electrohydrodynamic flow in a wire-plate non-thermal plasma reactor measured by 3D PIV method, Eur. Phys. J. D, 2009.
[22] R.B. Lakeh, M. Molki, Patterns of Airflow in Circular Tubes Caused by a Corona Jet With Concentric and Eccentric Wire Electrodes, J. Fluids Eng., 2010.
[23] J. Westerweel, Fundamentals of Digital PIV, Meas. Sci. Tech., 1997; M. Raffel et al., Particle Image Velocimetry, Springer, 2007.
[24] J. Podliński, A. Niewulis, J. Mizeraczyk, P. Atten, ESP performance for various dust densities, J. Electrostatics, 2008.