扫码关注艾尼科微信公众号

静电除尘器升级:高频电源与智能控制驱动的烟气治理

基于Alstom多起机组改造项目的实测结果与艾尼科(Enelco)技术展望——Per Ranstad等人研究整理

关键词
静电除尘器, 高频电源, 控制系统, 脉冲模式, 除尘器升级, 烟气治理, 颗粒物排放治理

在电厂与工业锅炉烟气治理持续走向更严排放标准的背景下,静电除尘器(ESP)性能提升成为既经济又高效的手段。来自Alstom Power(作者:Per Ranstad、Anders Karlsson、Colin Tonks、Keith Bradburn,通讯作者:per.ranstad@power.alstom.com)的系统研究表明,通过更换高频电源、升级控制系统并结合精细化调试,可在不扩建设备面积的前提下显著降低颗粒物排放[1][2]。静电除尘器在实际运行中常受粉尘电阻率、粒径分布和流速变化影响,导致背电晕(back-corona)和电场淬灭现象,从而使排放上升。为此,高频电源(HFPS)以其更低的电压纹波和更高的可控性,在提高平均电压和电晕电流、改善电流分布方面具有明显优势;在高电阻率粉尘情况下,采用脉冲模式和间歇供电可抑制背电晕并优化收集效率[1][8][9]。另外,智能控制系统对rapper(除尘锤击)时序与供电协调的优化,能在清灰瞬间将排放峰值降到最低,提高运行稳定性与节能效果。本文汇总了A至E五个煤电机组的改造案例:A厂(褐煤)在局部试验中通过在前两个场安装HFPS、整体升级控制器并将rapper转速调整为1 rpm,结合现场微调,最终实现与参考段对比后约32.6%的排放降低;B厂在改用SIR-E高频电源与EPOQ算法后恢复了在改燃PRB煤时的达标能力;C厂通过整体内件更新并配套SIR-E与PROMO监控,成功停用SO3调理并将排放降至极低水平;D、E厂的改造分别在不影响主体结构的前提下实现了约40%不透明度下降和25 MW产能恢复,带来明显的经济回报。以上案例说明,静电除尘器升级的有效包往往由高频电源、先进控制器(如EPIC系列)、优化的rapper控制(PCR)与在线监测(PROMO)协同构成。面向中国市场,像浆纸、钢铁、水泥与化工等行业普遍存在燃料变化与产能波动带来的粉尘治理挑战;通过引入艾尼科(Enelco)在极板、极线和电场优化方面的技术积累,结合HFPS与智能控制调优,可实现快速达标、减少运维成本并降低能耗。未来趋势包括更广泛的脉冲控制策略、基于大数据的在线自适应调优以及模块化HFPS与监控平台的融合,以满足中国日益严苛的环保法规与企业对灵活燃料、低碳运行的要求。总体而言,合理配置高频电源与控制系统,并进行系统调试,是实现静电除尘器低成本高效升级的关键路径,对排放达标、节能降耗和降低运维风险具有直接价值。

参考文献
[1] P. Ranstad and K. Porle, “High frequency power conversion: A new technique for ESP energization”, Proceedings of the EPRI/DOE International Conference on Managing Hazardous and Particulate Air Pollutants, Toronto, Canada, August 1995.
[2] P. Ranstad et al., “On experiences of the application of high-frequency power converters for ESP energisation”, Proceedings of the 9th International Conference on Electrostatic Precipitation, ICESP IX, Mpumalanga, South Africa, May 2004.
[3] H. Jacobsson et al., “Back-Corona Control with help of Advanced Microprocessor Enhances Performance”, Proc. of ICESP VI, Budapest, Hungary, June 1996.
[4] C. S. Deye, C. M. Layman, “A Review of Electrostatic Precipitator Upgrades and SO2 Reduction at the Tennessee Valley Authority Johnsonville Fossil Plant”, Power Plant Air Pollutant Control “Mega” Symposium, 2008.
[5] K. Porle, S. Francis, K. Bradburn; “Electrostatic Precipitators for industrial applications”, Rehva, 2005.
[6] K. R. Parker; “Applied electrostatic precipitation”, Blackie Academic & Professional, 1997.
[7] K. R. Parker; “Electrical operation of electrostatic precipitators”, IEE Power & energy series, 2003.
[8] P. Ranstad et al., “Pulse mode operation of high-frequency power supplies for ESPs”, ICESP XII, Nuremberg, Germany, May 2011.
[9] R. Guenther et al., “Intermittent Energization with High Voltage Switch Mode Power Supplies”, ICESP XII, 2011.
[10] P. Ranstad, J. Linner, “Aspects on high frequency power supplies for ESPs”, ICESP XII, 2011.
[11] P. Ranstad, “Design and Control Aspects on Components and Systems in High-Voltage Converters for Industrial Applications”, PhD Thesis, Royal Institute of Technology, Stockholm, 2010.
[12] A. Karlsson et al., “New strategies for advanced Power Control rapping”, ICESP XII, 2011.