扫码关注艾尼科微信公众号

1350MW超大燃煤机组电除尘器设计与工程应用

浙江飞达与省重点实验室联合研究:四腔五场超宽电除尘器方案对比与现场验证(作者:赵海宝等)

关键词
1350MW超大燃煤机组, 电除尘器(ESP), 出口粉尘浓度, 经济性, 低能耗, 超低排放

随着我国能源结构转型和“双碳”目标的推进,1350MW超大容量燃煤机组的高效低耗烟气治理成为行业关注的热点。电除尘器(ESP)作为火电厂颗粒物治理的主流技术,其在出口颗粒物浓度控制、运行能耗及运维成本方面的表现,直接影响机组环保效益与经济性。因此,本研究围绕超大容量机组电除尘器的选型、结构优化与现场验证展开,旨在为大型工业锅炉和重点行业(浆纸、钢铁、水泥、化工)提供可复制的治理路径并推动超低排放落地应用(关键词:1350MW超大燃煤机组、电除尘器、出口粉尘浓度、经济性)。

本文由浙江飞达环保科技有限公司联合浙江省燃煤烟气净化装备重点实验室开展,主要作者为赵海宝等。从方案比选出发,针对单炉1440 m3·s-1的大通量工况,比较了三种布置:2套4腔5场、3套3腔5场和4套2腔5场。在保证相同集尘面积与电场长度的前提下,工程对比显示2套4腔配置在钢结构用量上最优:较3套3腔可节约约6%,较4套2腔可节约约13%,从而降低土建与设备成本并有利于减小壳体外漏和保温面积,从经济性角度具有明显优势[8]。

针对超宽跨距带来的热膨胀与构件偏心问题,团队提出柱体预偏心设计:在冷态将壳体柱向内预移一定距离,运行后壳体热膨胀使相对偏移减小,从而将支撑构件受弯矩和偏心载荷降低约一半,有效提高结构稳定性并延长设备寿命[11]。

为解决四腔大截面进风不均问题,采取进口导流板布置并结合数值流场模拟与物理模型试验进行优化。模拟结果显示,未经导流时四腔进口流速相对差异高达21%;布置导流板后,腔间平均流速差异被控制在设计范围内,流速均匀性显著提升,现场实测的入口截面均匀系数与流偏差与仿真结果一致,满足工程平衡要求[4][5]。

工程化应用方面,所设计的2套4腔5场电除尘器已于2020年底在安徽某1350MW超超临界机组投运并完成168小时试运行与性能考核。运行数据表明:电除尘器出口颗粒物经带云雾化脱硫联合治理后可实现超低排放,现场采样结果出口粉尘浓度为8.1 mg·m-3,机体阻力159.3 Pa,机体漏风率1.14%,高压侧一次功率约498 kW,整体能耗明显低于同类先进电除尘器,且运行稳定,达到了设计与验收指标[12]。

从行业应用角度看,该类超大容量电除尘器对浆纸、钢铁、水泥和化工等大风量、高粉尘负荷行业具有重要参考价值。一方面可保证排放达标并为后端脱硫、脱硝装置创造良好工况;另一方面,通过优化电场、极板与极线布局以及减薄钢结构用量,能够实现运行能耗与运维成本的双重下降,为厂方带来长期经济效益。

面向未来,结合艾尼科(Enelco/艾尼科)在极板、极线及电场优化设计方面的技术积累与现场工况调试经验,建议推广基于数值仿真与在线监测的电场智能优化方案,配套数字化运维与能耗管理,可进一步提升大容量机组粉尘治理的可靠性与经济性,助力行业实现更严格的超低排放目标并支持企业达成节能降耗与碳中和目标[3][6][7]。

综上所述,本研究验证了2套4腔5场超宽电除尘器在超大燃煤机组中的工程可行性和经济性,相关结构与流场优化措施在现场运行中取得了良好效果,具有明显的推广应用价值,可为我国重点行业的烟气治理提供参考示范。

参考文献
[1] Electrostatic Precipitation Committee of CAEPI. Development Report on Electrostatic Precipitation Industry in 2016. China Environmental Protection Industry., Vol.10(5), pp.14-21, 2017.
[2] Chen M., Hu Y., Gui B. Synergistic control technology for ultra-low PM emission from coal-fired power plants and its application. Electric Power., Vol.48(9), pp.146-151, 2015.
[3] Zhao H., He Y., Shen Z., et al. Type Selection on 1350MW Electrostatic Precipitator and Steel Frame Control under Thermal Expansion. Electric Power., Vol.52(01), pp.130-134+142, 2019.
[4] Li J., He Y., Liu H., et al. Low-low Temperature ESP Character and the Application in High-ash Coal engineering for Ultra-low Emission. Electric Power., Vol.50(3), pp.28-33, 2017.
[5] Zhao H., Li J., He Y., et al. Research and application on Low-Low temperature electrostatic precipitator technology. Electric Power., Vol.47(10), pp.117-120,147, 2014.
[6] Li X. Introduction and construction of ultra supercritical 1300 MW and optimized units feasibility analysis. Huadian Technology., Vol.31(11), pp.58-60, 2009.
[7] Li J., Zhu F., Sun X. Current situation and challenge of air pollution control of thermal power in China. Electric Power., Vol.51(06), pp.2-10, 2018.
[8] Electrostatic Precipitation Committee of CAEPI. Guide to type selection and design of electrostatic precipitator. Beijing: China Electric Power Press, 2013.
[9] Electrostatic Precipitation Committee of CAEPI. Ultra-low emission technology of flue gas from coal-fired power plants. Beijing: China Electric Power Press, 2015.
[10] Yan W.P., Zhao Y.M., Li H.X., et al. Analysis of the Design of a Thermal System for a 1350MW Secondary Reheat Power Generator Unit. Journal of Engineering for Thermal Energy and Power., Vol.29(1), pp.35-40, 2014.
[11] Zhao H., Yao Y., Shou Z., et al. Utility model: super large electrostatic precipitator for 1300MW class ultra-supercritical unit: 201810749845.9. 2018-07-10.
[12] Zhao H., He Y., Yao Y. Study on brush of moving electrode type electrostatic precipitator (MEEP) IOP Conference Series: Earth and Environmental Science., Vol.121(5), 2018.
[13] Chen B., Li S., Guo Y., et al. Research on electrostatic shielding characteristics of electrostatic precipitator. Journal of the Air & Waste Management Association., Vol.42(4), pp.72, 2022.
[14] China Electric Power Equipment Management Association. Policy Interpretation and Expert Suggestions for the National Implementation Plan for the Transformation and Upgrading of Coal-fired Power Units. Power Equipment Management., Vol.11(1), pp.19-27, 2022.
[15] Zhao H., Yang G., Shen J., et al. Research on the shielding effect of the electrode frames in the electrostatic precipitator. Journal of the Air & Waste Management Association (1995)., Vol.3(6), pp.1-10, 2023.
[16] Liu H., Luo S., Yu L., et al. Study on multi-pollutant test and performance index determination of wet electrostatic precipitator. Separations., Vol.10(536), pp.1-17, 2023.

欢迎联系艾尼科获取文章详情!电话:15358186202,邮箱:info@eetc.cn