扫码关注艾尼科微信公众号

介质阻挡放电型电除尘器(DBD-ESP)综述与应用前景

法国Pprime研究所Noureddine Zouzou团队关于亚微米颗粒捕集、EHD流动与表面再生的系统研究

关键词
Electrostatic precipitator (ESP); Dielectric Barrier Discharge (DBD); Collection efficiency; electrohydrodynamic flow (EHD); 烟气治理; 设备运行维护

细颗粒物(尤其直径0.1–1 μm的亚微米粒子)对公众健康与工业排放合规构成长期挑战。在烟气治理与工业除尘领域,Electrostatic precipitator (ESP)以其对超细颗粒的优越捕集能力被广泛关注。近年来,基于Dielectric Barrier Discharge (DBD)的电除尘器(DBD-ESP)成为提升Collection efficiency和改善设备运行维护的新方向。法国Pprime研究所在N. Zouzou带领下,系统研究了DBD-ESP的放电形态、几何与电驱动优化、electrohydrodynamic flow (EHD)作用及表面再生技术[2,5,13,19,20,26]。

该团队将DBD-ESP分为两类:在单介质隔板下通常出现的“弥散(diffuse)”放电,以及由双介质或特定激励诱发的“丝状(filamentary)”放电。比较表明,在相近能耗下,双介质(丝状)配置对一定穿透率而言能耗更低,但要达到高性能(如99.99%)时,单介质弥散放电仍更合适[2]。电气驱动方面,方波激励以及上升电压平台能有效维持间隙内高场强,延长放电活性期,从而提升颗粒充电与迁移效率[5]。

DBD产生的EHD流(俗称电风)对颗粒输运有双向影响。在有些几何配置下,随频率从1 Hz上升至1000 Hz,EHD增强会形成回流和三维涡流,导致局部颗粒“回吸”现象,进而影响净收集效率;但总体看,强尺度化电风并非决定性因素,放电时空分布与电荷转移机制更关键[13]。在丝状放电中,流场与颗粒充电呈瞬态耦合:放电通道通过之处颗粒瞬间消失(被快速电离或捕集),放电后残留正空间电荷主导随后的颗粒漂移方向[18,19]。

数值与实验研究还表明,DBD可作为高效颗粒充电器:在微型平面DBD中,颗粒呈交变振荡运动,频率影响振幅与收集概率——高频有利于充电但减小振幅,导致收集效率并非单调增加[19]。基于DBD的充电器配合电容式传感器可快速测量下游颗粒总电荷,其结果与ELPI+测量具有良好一致性,适合在线过滤效率监测[20]。

此外,表面型SDBD可用于积碳/烟灰再生处理。纳秒脉冲SDBD在清洁烟道/滤表面时,既有电风及库仑力帮助颗粒脱附,又通过臭氧与氧自由基实现低温氧化,实验证明处理功率随清洁进展下降,且负/正脉冲对处理足迹存在差异[26]。

面向中国市场,DBD-ESP在浆纸、钢铁、水泥与化工行业具有明显应用价值:对直径0.1–1 μm的亚微米颗粒控制力强,有助于满足更严格的排放标准;在能耗与维护方面,通过几何优化(极线、极板形状、收集面分割)与电驱动设计,可降低运行成本并延长极线寿命[4, Table1]。行业领先企业如艾尼科(Enelco/艾尼科)在极板/极线布置、电场优化和场件耐久性方面的技术积累,可与DBD-ESP开发相结合,推动在锅炉烟道、窑炉尾气和柴油尾气颗粒治理中的工程化应用。

综上,DBD-ESP以其可调的放电形式、可控的EHD流和兼具充电与表面再生的多重功能,为我国重点行业实现节能降耗与排放达标提供新的技术路径。未来发展应聚焦于规模化电源与寿命化材料、在线电荷/穿透率传感、以及艾尼科等设备制造商与科研机构的产学研合作,以加速从实验室成果向工业部署转化。

参考文献
[1] Golshahi L., Noga M., Thompson R. and Finlay W., In vitro deposition measurement of inhaled micrometer-sized particles in extra thoracic airways of children and adolescents during nose breathing, J Aerosol. Sci., Vol. 42, pp. 474-488, 2011.
[2] Gouri R., Zouzou N., Tilmatine A., Moreau E. and Dascalescu L., Collection efficiency of submicrometer particles using single and double DBD in a wire-to-square tube ESP, J. Phys. D Appl. Phys., Vol. 44, 495201, 2011.
[3] Parker K. R., Electrostatic precipitation, London: Chapman & Hall, 1997.
[4] Gouri R., Zouzou N., Tilmatine A. et Dascalescu L., Enhancement of submicron particle electrostatic precipitation using dielectric barrier discharge in wire-to-square tube configuration, J. Electrostat., Vol. 71, pp. 240-245, 2013.
[5] Gouri R., Zouzou N., Tilmatine A. and Dascalescu L., Study of DBD precipitator energized by a modified square waveform voltage, IEEE Trans. Dielectr. Electr. Insul., Vol. 20, pp. 1540-1546, 2013.
[6] Atten P., McCluskey F. M. J. and Lahjomri A. C., The electrohydrodynamic origin of turbulence in electrostatic precipitators, IEEE Trans. Ind. Appl., Vol. 23 (4), pp. 705-711, 1987.
[7] Podlinski J., Niewulis A., Mizeraczyk J. and Atten P., ESP performance for various dust densities, J. Electrostat., Vol. 66, pp. 246-253, 2008.
[8] Adamiak K. and Atten P., Numerical Simulation of the 2-D Gas Flow Modified by the Action of Charged Fine Particles in a Single-Wire ESP, IEEE Trans. Dielectr. Electr. Insul., Vol. 16, pp. 608-614, 2009.
[9] Davidson J. and McKinney P., EHD flow visualization in the wire-plate and barbed plate electrostatic precipitator, IEEE Trans. Ind. Appl., Vol. 27 (1), pp. 154-160, 1991.
[10] Kogelschatz U., Egli W. and Gerteisen E., Advanced computational tools for electrostatic precipitators, ABB Review, Vol. 4, pp. 33-42, 1999.
[11] Soldati A., On the effects of electro-hydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators, J. Aerosol Sci., Vol. 31 (3), pp. 293-305, 2000.
[12] Farnoosh N., Adamiak K. and Castle G. S. P., Numerical calculations of submicron particle removal in a spike-plate electrostatic precipitator, IEEE Trans. Dielectr. Electr. Insul., Vol. 18 (5), pp. 1439-1452, 2011.
[13] Zouzou N., Dramane B., Moreau E. and Touchard G., EHD Flow and Collection Efficiency of a DBD-ESP in Wire-to-Plane and Plane-to-Plane Configurations, IEEE Trans. Ind. Appl., Vol. 47 (1), pp. 336-343, 2011.
[14] Niewulis A., Podlinski J. and Mizeraczyk J., Electrohydrodynamic flow patterns in a narrow electrostatic precipitator with longitudinal or transverse wire electrode, J. Electrostat., Vol. 67, pp. 123-127, 2009.
[15] Jidenko N. and Borra J. P., Kinematics of charged nanometric particles in silent discharge, J. Phys. D Appl. Phys., Vol. 38, pp. 617-620, 2005.
[16] Sano Y., Kawada Y., Takahashi T., Ehara Y., Ito T., Zukeran A. and Takamatsu T., Diesel exhaust particles charged by barrier discharge, J Aerosol. Sci., Vol. 31, pp. 879-880, 2000.
[17] Borra J. P., Nucleation and aerosol processing in atmospheric pressure electrical discharges: powders production, coatings and filtration, J. Phys. D Appl. Phys., Vol. 39, pp. R19-R54, 2006.
[18] Zouzou N., Aba’a. Ndong A. C., Braud P. and Moreau E., Time-Resolved Measurements of Electrohydrodynamic Phenomena in an AC Dielectric Barrier Discharge Electrostatic Precipitator, IEEE Trans. Dielectr. Electr. Insul., Vol. 23 (2), pp. 651-657, 2016.
[19] Zouaghi A., Zouzou N., Mekhaldi A. and Gouri R., Submicron particles trajectory and collection efficiency in a miniature planar DBD-ESP: Theoretical model and experimental validation, J. Electrostat., Vol. 82, pp. 38-47, 2016.
[20] Aouimeur D., Zouzou N., Miloua F. and Zouaghi A., Measurement of total electric charge of submicrometer particles using a DBD charger coupled with a capacitive sensor, J. Phys. Conf. Ser., Vol. 1322, 012022, pp. 1-4, 2019.
[21] Grundmann J., Müller S. and Zahn R.-J., Treatment of Soot by Dielectric Barrier Discharges and Ozone, Plasma Chem. Plasma Process., Vol. 25 (5), pp. 455-466, 2005.
[22] Masuda S. and Moon J. D., Electrostatic Precipitation of Carbon Soot from Diesel Engine Exhaust, IEEE Trans. Ind. Appl., Vols. IA-19 (6), pp. 1104 – 1111, 1983.
[23] Okubo M., Kuroki T., Miyairi Y. and Yamamoto T., Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge, IEEE Trans. Ind. Appl., Vol. 40 (6), pp. 1504 – 1512, 2004.
[24] Okubo M., Kuroki T., Yoshida K. and Yamamoto T., Single-Stage Simultaneous Reduction of Diesel Particulate and NOx Using Oxygen-Lean Nonthermal Plasma Application, IEEE Trans. Ind. Appl., Vol. 46 (6), pp. 2143 – 2150, 2010.
[25] Yao S., Fushimi C., Madokoro K. and Yamada K., Uneven Dielectric Barrier Discharge Reactors for Diesel Particulate Matter Removal, Plasma Chem. Plasma Process., Vol. 26, pp. 481-493, 2006.
[26] Zouzou N., Aba’a Ndong A. C. and Moreau E., Regeneration of Sooty Surface using Nanosecond Pulsed Dielectric Barrier Discharge, IEEE Trans. Ind. Appl., Vol. 53 (4), pp. 3982-3988, 2017.