扫码关注艾尼科微信公众号

双极脉冲预电荷提升亚微米颗粒电荷量:基于线-板充电器的实验研究

浙江大学化工生物工程学院提出的双通道微秒级脉冲线-板充电结构,有效增强亚微米颗粒充电效率

关键词
亚微米颗粒, 脉冲电场, 颗粒充电, 静电除尘器, 工业除尘

细颗粒物(尤其是亚微米颗粒)是大气污染与职业健康治理中的难点,传统静电除尘器(ESP)在对直径小于1 μm的颗粒充电与收集上受限于电离风、背电晕等现象。针对这一行业痛点,浙江大学(College of Chemical and Biological Engineering)研究团队(Zhenyu Yan、Hui Fu、Zhen Liu*、Keping Yan)提出并验证了一种双通道线-板(wire-plate)脉冲充电器,配套同步双极脉冲电源,用以提升细颗粒的带电量并促进后续凝聚与捕集。

研究采用双区线-板结构,充电区长约150 cm,细线电极半径约0.01 mm,线间距1.5 cm,线-极板间距可调1–5 cm,每区10根电极。所配脉冲电源为自制同步双极输出,脉冲宽度约10 μs,峰值电压0–35 kV,频率可调0–15 kHz;典型实验工况为5 kHz、气速约2 m/s、颗粒浓度约10 mg/m3,样品采用艾灸烟雾(moxa smoke),进出口用ELPI(Electrical Low Pressure Impactor)测量粒径分布与电荷量。实验通过关闭ELPI自身充电器,直接测出充电区后颗粒的平均电荷量,比较脉冲与直流(DC)两种充电模式的差异。

结果显示:脉冲双极放电相比直流可承受更高峰值电压(在3 cm间隙脉冲峰值可达约26 kV,而直流约21 kV),且脉冲情况下粒子总体数量在通过充电区后变化很小(在某些工况下降幅度<10%),说明脉冲以预充电为主而非立即收集,有利于下游凝聚。而在充电效果上,脉冲尤其是负脉冲在窄间隙(如1 cm)时对扩散充电贡献显著,测得单颗粒平均电荷可达约1800 个元电荷(e),这是直流充电在类似工况下(约140–500 e)无法比拟的;直流虽然导致通过区后颗粒数明显下降(在3 cm间隙下接近90%的减少,因直接被收集),但留出的颗粒电荷量较低。分析认为:脉冲放电的高峰电压与短脉冲周期有利于产生大量离子并通过扩散过程赋予亚微米颗粒更高总电荷,而直流稳定场更利于直接驱动粒子漂移并被早期捕集。

对工业应用而言,这一“脉冲预充电+下游电除尘/电凝聚”策略对浆纸、钢铁、水泥与化工等行业尤为重要:在这些行业的窄径分布或超细粉尘治理中,通过预充电实现颗粒团聚后进ESP能显著提高收集效率、减少电场电压要求、降低二次排放与粉尘再悬浮。同时,相比化学凝聚剂,电场脉冲方案避免了药剂投加带来的运营复杂性与成本。结合艾尼科(Enelco)在极板/极线结构设计、电场均匀化与系统改造方面的经验,可将双极脉冲预充电单元作为模块化配件,应用于现有ESP改造或新建工程:通过优化极板间隙、极线直径与脉冲参数,可在保证达标排放的同时实现运行能耗下降与检修频率降低,从而降低整体运维成本。

展望未来,产业化路径会朝向脉冲双极预充电与智能控制一体化:结合实时粒径在线监测、变频脉宽调节与电源功率管理,可在不同工况下自适应调整充电策略;对高温含尘气体,可与预冷、烟气再循环或电凝聚器级联,形成更高效的亚微米颗粒治理体系。对于追求排放超低与能源效率的中国重点行业,这类基于脉冲充电的技术具有显著应用价值,有望成为电除尘器(ESP)升级改造的重要方向。

参考文献
[1] LIU W, XU Y, LIU W, et al. Oxidative potential of ambient PM(2.5) in the coastal cities of the Bohai Sea, northern China: Seasonal variation and source apportionment. Environ Pollut, 2018, 236: 514-28.
[2] SUN Y, XU S, ZHENG D, et al. Effects of haze pollution on microbial community changes and correlation with chemical components in atmospheric particulate matter. Sci Total Environ, 2018, 637-638: 507-16.
[3] ZHANG S, LI S, XU Y, et al. Electrostatic precipitation (ESP) index driven bio-aerosol collection for a high biological viability sampling. Journal of Cleaner Production, 2023, 423.
[4] WATANABE T, TOCHIKUBO F, KOIZUMI Y, et al. Submicron particle agglomeration by an electrostatic agglomerator. Journal of Electrostatics, 1995, 34(4): 367-83.
[5] KILDESø J, BHATIA V, LIND L, et al. An experimental investigation for agglomeration of aerosols in alternating electric fields. Aerosol Science and Technology, 1995, 23(4): 603-10.
[6] KIM Y, LEE J, HWANG J, PARK K. An experimental study of electrical agglomeration of fine particles in an alternating electric field. 1998.
[7] TRUCE R, WILKINS J, CRYNACK R, HARRISON W. Enhanced fine particle collection using the indigo agglomerator; Proceedings of the 10th International Conference on Electrostatic Precipitation, Australia, 2006.
[8] CRYNACK R, TRUCE R, HARRISON W. Indigo particle agglomerators reduce mass and visible emissions on coal fired boilers in the US; Proceedings of the 10th International Conference on Electrostatic Precipitation, Australia, 2006.
[9] TRUCE R, WILKINSON L. Enhanced fine particle and mercury emission control using the indigo agglomerator; Proceedings of the 11th International Conference on Electrostatic Precipitation, Hangzhou, 2008.
[10] WANG H.J. Industrial Electrostatic Precipitation. Addison-Wesley; Reading Mass.
[11] LAWLESS P A. Particle charging bounds, symmetry relations, and an analytic charging rate model for the continuum regime. Journal of Aerosol Science, 1996, 27(2): 191-215.
[12] MARJAMÄKI M, KESKINEN J, CHEN D-R, PUI D Y. Performance evaluation of the electrical low-pressure impactor (ELPI). Journal of Aerosol Science, 2000, 31(2): 249-61.